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It has been suggested that climate change impacts on the elec-
tric sector will account for the majority of global economic dam-
ages by the end of the current century and beyond [Rose S, et al.
(2014) Understanding the Social Cost of Carbon: A Techni-
cal Assessment]. The empirical literature has shown significant
increases in climate-driven impacts on overall consumption, yet
has not focused on the cost implications of the increased inten-
sity and frequency of extreme events driving peak demand, which
is the highest load observed in a period. We use comprehensive,
high-frequency data at the level of load balancing authorities to
parameterize the relationship between average or peak electric-
ity demand and temperature for a major economy. Using statis-
tical models, we analyze multiyear data from 166 load balancing
authorities in the United States. We couple the estimated tem-
perature response functions for total daily consumption and daily
peak load with 20 downscaled global climate models (GCMs) to
simulate climate change-driven impacts on both outcomes. We
show moderate and heterogeneous changes in consumption, with
an average increase of 2.8% by end of century. The results of our
peak load simulations, however, suggest significant increases in
the intensity and frequency of peak events throughout the United
States, assuming today’s technology and electricity market funda-
mentals. As the electricity grid is built to endure maximum load,
our findings have significant implications for the construction
of costly peak generating capacity, suggesting additional peak
capacity costs of up to 180 billion dollars by the end of the century
under business-as-usual.

electricity consumption | peak load | climate change | economic impacts |
extreme events

Integrated Assessment Models (IAMs) used to estimate the
US government’s social cost of carbon include large costs due

to changes in electricity demand resulting from climate change
(1–3). The Climate Framework for Uncertainty, Negotiation,
and Distribution (FUND), for example, estimates the major-
ity of the costs of climate change to result from the additional
cost of cooling (4). However, FUND and the other IAMs rely
on a highly simplified and outdated estimate of the relation-
ship between rising temperatures and heating and cooling costs
(5, 6). At the same time, future capital investments in electric
generation capacity require accurate, region-specific forecasts of
future electricity demand. Many aspects of these forecasts are
well understood: electricity demand tends to rise with popula-
tion, income, and the presence of energy-intensive industries
(7). However, because electricity use by residential, commer-
cial, industrial, and agricultural customers is strongly affected by
ambient temperature, climate change-induced changes in tem-
perature are likely to significantly affect future generation, trans-
mission, and distribution requirements relative to a world with a
stationary climate. As the electricity grid is designed for max-
imum load days, which tend to be the hottest days in many
areas, the increasing intensity of extreme heat days will require

additional investments in peak generation capacity, transmission,
or storage.

Prior work has examined the relationship between electricity
load, i.e., the quantity of electricity demanded, and tempera-
ture at the regional and local level. Estimates to date have
focused primarily on aggregate consumption impacts, using
state-level monthly averages of residential electricity load (8, 9),
high-frequency data at the single-state or regional level (10–
13), and residential billing data from electric utilities (14).
The majority of this literature is based on California and
the American South. The applicability of these state-level or
regional results to a broader geographical area may be lim-
ited. Prior efforts to quantify peak impacts had to rely on
structural models and highly aggregated consumption data
(15). We estimate peak and consumption impacts of climate
change for the United States as a whole using observed high-
frequency data.

We contribute to this literature by considering capacity
impacts, driven by variability in impacts across space and time.
This analysis is made possible through the construction of a high-
frequency dataset of electric load. We examine the tempera-
ture responsiveness of daily consumption and peak load across
the United States, now the second largest producer and con-
sumer of electricity in the world. In 2012, the United States
alone composed approximately 20% of the world electricity mar-
ket, producing greater quantities than all of Europe combined,
and second only to China. In sum, our paper combines spa-
tially disaggregated high-frequency data on regional electricity
load and temperature across the United States with regional cli-
mate predictions, allowing us to simulate disaggregated changes
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in future electricity demand resulting from climate change based
on observed instead of modeled behavior.

Specifically, we construct a dataset that combines fine-scaled
electricity load data and comprehensive sectoral coverage with
daily weather patterns. We use this dataset to estimate sepa-
rate temperature response functions for 166 distinct load zones
(for our definition of load zones, see SI Appendix, Compilation of
Energy Consumption Data). We exploit the richness of our data
to document nonlinearities in the response functions. We also
introduce a method that allows us to forecast beyond the sup-
port of the temperature distributions we observe, focusing on
the “tails” of the temperature distribution to properly estimate
changes due to the increases in extreme temperature expected as
a result of climate change.

Because electricity cannot currently be cost-effectively stored
at scale, hour-to-hour variability in demand significantly impacts
production costs. Because electricity planners in the United
States often use reserve margins (capacity requirements above
forecasted peak load) of 15 to 20%, the response of peak load
to climate change will translate directly into increases in capi-
tal costs, even if the average generation impacts are not large.
Noting that a significant share of the levelized cost of elec-
tricity generation is composed of capital costs (7), we again
use the high frequency of our time series data to estimate
separate response functions and predictions for both average
and peak loads. In particular, we use multiple regression anal-
ysis that exploits interday variation. We find that peak load
responds more strongly to increases in temperature, suggest-
ing that required increases in generation (or storage) capac-
ity investments may be significantly larger than previously
thought.

Next, we combine these results with projections of future tem-
perature change from a set of downscaled climate projections
under two Representative Concentration Pathways (RCPs) to
estimate the change in both average and peak loads due to cli-
mate change. We demonstrate how these predictions vary spa-
tially, as a result of regional differences in both temperature
response curves and climate projections. Overall, if the US had
faced, over the past decade, the warmer climate that scientists
predict for the future, our results show that much greater gen-
eration or storage capacity would have been needed. As such,
even absent population and income changes, climate change will
demand significant changes to the electric grid. We conclude by
discussing scenarios under which technology, policy, or market
changes would mitigate these effects.

Results
We estimate separate temperature response functions for aver-
age and peak loads for every load zone in the data. SI Appendix,
Fig. S1 displays the load zones in our sample. For simplicity of
display, we first visually show results for the two largest Indepen-
dent System Operators (ISOs) in our data: the Electricity Relia-
bility Council of Texas (ERCOT) and the PJM Interconnection.
ERCOT covers Texas only and can be thought of as more repre-
sentative of warmer regions. PJM covers parts of Delaware, Illi-
nois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North
Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West Vir-
ginia, and the District of Columbia, and it can be thought of as
representative of colder regions.

Temperature Response Functions. We estimate temperature res-
ponse functions for daily average and peak loads. Fig. 1
documents response functions for ERCOT and PJM with min-
imal restrictions on the functional form that the responses take.
Visual inspection of these lines suggests that imposing a linear
model above roughly 21 ◦C may be an appropriate fit for higher
temperatures, a hypothesis we will return to in order to conduct

Fig. 1. Daily electricity temperature response functions, average (total
hourly load/24) (blue) and peak (max hourly load) (red). Each point esti-
mate represents the effect of replacing a day with average temperature in
the omitted category (15 ◦C to 18 ◦C) with a day of the relevant average
temperature. Regressions used as controls: precipitation, day of week fixed
effects, month of year fixed effects, and a sixth-order Chebychev polyno-
mial in time. The 95th percentile confidence intervals are estimated using
Newey–West standard errors. ERCOT (Top, relatively warm) and PJM (Bot-
tom, relatively cold) are the two largest ISOs in the data. Histograms at the
bottom of each panel display the average number of days per month in each
temperature bin.

climate impact projections. The height of the blue lines at each
temperature represents the differences in average load (in
megawatt hours) for that temperature relative to the omitted cat-
egory, a day with average daily temperature between 15 ◦C and
18 ◦C. The height of the red lines represents the same difference
for peak load. We also plot a histogram of the temperature dis-
tribution for these ISOs on the same graph to show the support
of the data used to identify these curves statistically. SI Appendix,
Figs. S3 and S4 display the estimated response functions for all
load zones in our data.

Temperature responses are predominantly driven by the
extent to which an area heats or cools with electricity. ERCOT,
which exclusively serves Texas, has nearly symmetric response
functions for both average and peak loads across high and
low temperatures. In contrast, we document an asymmetric
temperature response curve for PJM, with higher average
and peak loads resulting from cooling loads. This difference
is consistent with different heating and cooling technologies
across the two regions. Whereas half of Texas residences use
electricity for space heating, only 12% of homes in the North-
east use electricity—far more use natural gas or fuel oil (16).

We also note the linear shape of the response function above
21◦C for both average and peak loads. This finding supports our
early supposition that imposing a linear function over 21◦C is
well justified as a method to obtain out-of-sample predictions for
high temperatures. To confirm this, we also calculate the corre-
lation between predicted values for a regression using bins above
21◦C versus a regression imposing a linear response above 21◦C.
The average of this correlation coefficient across the zones is
above 0.9 for both average and peak loads.
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The difference in the shape of these regional response func-
tions has particular implications for climate change. For nearly
all regions, increases in the mean of the temperature distribu-
tion will increase average and peak loads at higher temperatures.
However, this increase in average load in some areas (such as
ERCOT) will be partly compensated by the reduction in the
number of heating degree days. Other areas (such as PJM),
which show relatively little load response to cooler temperatures,
will not experience as substantial a compensating reduction in
average loads due to the reduction of cool days.

Climate Simulations. Combining results from our empirical model
and future predictions of climate change, we estimate end-of-
century percent changes in average load, daily peak load, the
95th/99th percentiles of load, and the counts of days over the
current 95th/99th percentiles. For visual display, we aggregate
the load zone results to five groups: ERCOT, ISO-New Eng-
land (ISONE), New York ISO (NYISO), PJM, and all other load
zones. The upper half of Table 1 shows the summary of results
under the modest warming RCP4.5 scenario. In line with prior
estimates for a subset of regions, we find that end-of-century
results predict 2.8% increases (column 1) in average hourly load
across all regions as a result of climate change. However, daily
peak electricity demand rises 3.5% (column 2), indicating that
effects on peak demand are more pronounced than effects on
average demand.

Next, we examine the impact on the right tail of the daily peak
load distribution. Although we have used the term “peak” to
refer to daily peaks, capacity planning is based off longer-term
horizons, e.g., annual peaks. To capture this impact, column 3
documents the average shift in the 95th percentile of daily peak
load. This upward shift in the right tail is 7.2%, reflecting that
the upper end of the distribution will “stretch” farther outward
than the middle. Columns 4 and 5 estimate the percent change
in the number of days with peak load greater than the current
95th and 99th percentiles, respectively. We project 153 and 389%
increases for the 95th and 99th percentile, respectively. That is,
levels of demand that are currently considered unusually high

Table 1. Increases in peak demand dwarf increases in average demand by end of century

%∆ frequency %∆ frequency
%∆ 95th days w. days w.
percentile peak load > peak load >

%∆ average %∆ peak daily peak current 95th current 99th
hourly load daily load load percentile percentile

Simulation type Intensity Intensity Intensity Frequency Frequency

RCP 4.5
FERC 2.8 3.5 6.8 158 382
ERCOT 3.7 4.3 6.2 150 460
ISONE 1.6 2 7.1 103 260
NYISO 2.7 3.3 8.5 128 312
PJM 2.3 3.1 8 133 329
Total 2.8 3.5 7 152 374

RCP 8.5
FERC 8 9.7 17.2 407 1, 532
ERCOT 10.1 11.5 15.2 406 1, 634
ISONE 5 6 17.7 281 1, 024
NYISO 8 9.2 21.2 334 1, 230
PJM 7 8.9 20.5 354 1, 347
Total 7.9 9.6 17.6 395 1, 492

Column 1 is the projected percent change in hourly generation, column 2 is the projected percent change
in daily peak load, column 3 is the projected percent change in the 95th percentile of daily peak load, and
columns 4 and 5 are the projected percent change in the number of days with peak load greater than the
present-day 95th and 99th percentiles, respectively. Each projection is based on the average projected change
in temperature for 19 independent climate models. The five rows display results across five geographic regions
of the United States.

will become much more common, even absent changes in popu-
lation or income.

The lower half of Table 1 simulates results for the higher-
emissions scenario, RCP8.5. As under RCP4.5, percentage
increases in peak load exceed percentage increases in average
load. Because RCP8.5 reflects a higher emissions trajectory and,
on average, more pronounced increases in temperature, we find
larger percentage changes in all categories. Of particular note are
increases of over 1,500% in the number of days over the current
99th percentile of electricity consumption. To put this number in
perspective, this would indicate that, for ERCOT, 65 days a year
would have the peak load of or in excess of the currently four
highest load days.

To better understand why peak load increases more than aver-
age load, we again focus on ERCOT and PJM as representative
regions. Fig. 2 plots predicted end-of-century changes in peak
electricity demand obtained by combining our empirical model
with the ensemble of climate predictions. We plot three distribu-
tions. First, we plot (in blue) the distribution of peak load under
present-day temperature distribution. This bimodal distribution
in ERCOT shows two peaks in the peak demand distribution: one
with relatively low use and one with relatively high use. On the
same graph, we also plot predictions from the ensemble of climate
models under RCP4.5 (green) and RCP8.5 (red). Note that the
low-use mode does not shift substantially for either ERCOT or
PJM; this is because the number of days with moderate heating
needs decreases even as the number of days with moderate cool-
ing needs increases. However, because most of the high-peak days
are generated by warmer temperatures, the upward shift of the
temperature distribution has a corresponding effect on the distri-
bution of peak load days, driving the second mode higher under
RCP4.5 and higher still under RCP8.5. PJM shows a similar but
less pronounced effect, with a second mode beginning to emerge
under the RCP8.5 scenario. These simulations are possible due to
the high-frequency nature of our data.

Fig. 3 documents by-county changes in the intensity of peak
load under RCP8.5 (SI Appendix, Fig. S2 displays the results for
RCP4.5). The southern United States experiences the greatest

1888 | www.pnas.org/cgi/doi/10.1073/pnas.1613193114 Auffhammer et al.
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Fig. 2. Climate change shifts the distribution of peak electricity demand
upwards. The distribution of daily peak load is bimodal and shifts to the
right by end of century. Shown is a comparison of kernel density plots of the
observed hourly peak of daily load (blue), predicted peak load under RCP4.5
(green), and predicted peak load under RCP8.5 (red), by end of century.
Results are averaged across 20 independent climate models.

increases in load as a result of climate change, whereas the
Northwest actually sees decreases in load. These regional
differences are driven by heterogeneity in both the estimated
temperature response curves and the shift in the temperature
distribution predicted by the climate models. The differences in
temperature response functions are due to, among other factors,
the difference between areas with primarily electricity and natu-
ral gas heating, air conditioning penetration, and the proportion
of load required for heating and cooling relative to that required
for industrial processes.

These results are indicative of a need for regionally distinct
strategies to adapt to climate change. Some areas, particularly in
the southern United States, will experience substantial increases
in the “peakiness” of electricity demand, whereas others, such as
the Northwest, may actually see decreases in average and peak
loads as a result of climate change. Some regions, such as the
Northwest, currently have “winter peaks”: Most energy is con-
sumed during the coldest hours of the year, because much of the
heating load is borne by electricity. This regional heterogeneity
in future peakiness will depend, of course, on appliance choices
in the future. That is, regional differences are likely to persist in
some form, although perhaps not in ways we can currently antic-
ipate. In conclusion, these regional changes imply shifts in the
need for new transmission and generation (or storage) capacity
in particular.

Discussion
Overall, we find that peak load, at both the daily and annual lev-
els, is impacted by climate change far more than is average load
(consumption). Moreover, the impacts on peak load vary sub-
stantially across space, driven by differences in the distribution of
heating and cooling degree days as well as differences in heating
and cooling technologies. These results imply that the average
generation impacts found to date in the literature could substan-

tially underestimate the total cost in the electricity sector of cli-
mate change. In particular, adaptation could require additional
expenses in terms of capacity or storage or transmission invest-
ments, not simply generation costs.

We find that, while average generation needs increase by
2.8% by end of century for RCP4.5, the upper tail of peak load
increases by 7.2%. The upper tail of peak load increases by 18%
in the RCP8.5 scenario. Installing an additional 7% of capacity
in the United States at current prices would cost around 70 bil-
lion dollars, and increasing capacity by 18% would cost around
180 billion dollars. That is, the cost implications are nontrivial.
These estimates show that the existing papers focusing solely on
consumption level impacts ignore a large portion of the likely
costs of climate change.

Calibrating the impact of temperature changes on capital costs
remains an important area for future work. Our results imply that
the ratio of peak load to average load will increase under climate
change, implying that the mix of power plants on the grid will
likely change. Simulations of the grid that incorporate these peak
and average responses, as well as heterogeneity across space, will
be valuable for grid planners as well as for integrated assessment
modelers.

We caution that these results are meant to illustrate the
change in electricity demand as a result of climate change in a
business-as-usual setting, used in many modeling contexts (7).
Importantly, the reduced-form model we estimate holds adap-
tation, economic growth, technology, and current infrastructure
constant. Here we discuss the possible effects of alternative
assumptions.

The direction of adaptation impacts are ambiguous. Although
increasing temperatures may spur greater adoption of air con-
ditioners (and therefore greater temperature impacts), they
may also spur the development of more efficient air condition-
ing technologies. Greater economic growth would imply level
changes in electricity demand as well as greater temperature
responses, because heating and air conditioning use tends to
increase with income (17, 18). Thus, economic growth would
imply that our estimates are likely too small.

Changes in technology and infrastructure could mitigate the
peak load effects we estimate, in the following ways. Electricity
storage technologies currently face significant challenges related
to cost and financing, although they are the focus of a sizable
amount of research and development, and costs are declining
(19, 20). Advances in batteries or the use of electric vehicles
for storage would smooth and narrow the distributions displayed

Fig. 3. Projected change in intensity of peak load (RCP8.5). The projected
change in intensity of peak load under RCP8.5 varies geographically, with
the largest increases in the South and West. Coloring reflects projected per-
centage increases in the daily peak load due to temperature rise by end of
century.

Auffhammer et al. PNAS | February 21, 2017 | vol. 114 | no. 8 | 1889

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
29

, 2
02

1 



www.manaraa.com

in Fig. 2. As such, although average generation would not be
directly impacted, peaks would diminish.

The impact of increasing penetration of renewable technolo-
gies is ambiguous. Both wind and solar outputs are highly vari-
able, with peaks in electricity demand more closely matching
solar production than wind production (21). As such, increases
in solar capacity could smooth some of peak demand. However,
California’s experience has demonstrated that operational chal-
lenges can arise because solar production is not exactly coinci-
dent with peak demand (22).

Finally, widespread adoption of time-varying prices, such as
real-time prices, could smooth the distribution of demand, with
customers finding the optimal way to shift some of their demand
from peak to off-peak hours. As of 2014, 4% of customers faced
time-varying prices, and the count is growing (23). If those pro-
grams continue to grow, and if customers respond by shifting
load, the impacts we estimate would be mitigated.

In conclusion, we can envision several changes to the elec-
tric grid that would mitigate the peak impacts we estimate. Our
results point to the possibility of climate changing increasing the
demand for storage technology, demand response programs, and
alternative pricing schemes.

Data and Methods
Data.
Electricity data. The electricity load data used in this paper come
from the Federal Energy Regulatory Commission (FERC) Form
714—Annual Electric Balancing Authority Area and Planning
Area Report (for short, FERC 714) and from individual ISO
reports, where available.

Specifically, we gather hourly energy use from 2006–2014 for
every balancing authority area and planning area. Because this
time period covers the Great Recession, we verify that our
results are not sensitive to dropping recessionary months (see
SI Appendix). Our sample covers most of the balancing authori-
ties in the FERC 714 data, although we exclude areas that over-
lap with data we obtain directly from the ISOs (see below). To
link the FERC 714 data to the geographic areas they serve, we
create a mapping from each respondent to county Federal Infor-
mation Processing Series codes using data from Energy Infor-
mation Agency Form 861 (see SI Appendix). Additionally, some
ISOs provide load data independent of the FERC 714 system.
Where available, we use ISO data instead of the FERC data to
obtain more disaggregated estimates. In total, our data contain
166 distinct load zones. SI Appendix, Fig. S1 displays the sample
area, with distinct colors for each zone. Coverage gaps indicate
areas where load data are either missing or could not be linked
to a geographic zone.

For expositional clarity, we use the generic phrase “load area”
to refer to the balancing authorities, planning areas, and ISO
zones in our data. We define average hourly load (in megawatt
hours) as the total daily load divided by 24, and peak load as
the maximum hourly load in a given calendar day. We obtain
daily data on minimum temperature, maximum temperature,
and precipitation from the Parameter-elevation Relationships on
Independent Slopes Model (PRISM) Climate Group’s AN81d
dataset. These data are created using observations from more
than 10,000 weather stations, interpolated to 4× 4 km grid cells
using PRISM (24). This method accounts precisely for weather
variation induced by topological features that may be inappro-
priately captured by more basic interpolation algorithms (25).
Climate data. After estimating the temperature response func-
tions for each load zone, we combine those response functions
with regional predictions of temperature change to produce
zone-specific projections of changes in both average and peak
loads due to climate change.

To create region-specific predictions of end-of-century chan-
ges in electricity load due to climate change, we use a set of

climate projections from the Coupled Model Intercomparison
Project 5 (26) downscaled using the Multivariate Adaptive Con-
structed Analogs method (27). These projects combine output
from disaggregated climate predictions with historical data on
regional climate variations to predict changes in climate that vary
by region.

Model.
Statistical model. To estimate the response function of average
and peak loads to weather, we estimate a set of time series mod-
els, one for each load zone. We rely on interday variation in total
load or peak load as a function of daily weather to identify the
regression coefficients used in our simulations. The estimating
equation is given by

Loadt = α+
∑

b
βbT

b
t + γTt1[Tt > 21]

+ δPt + f (t) + φdow + ψmon + εt , [1]

where t is day of sample, Loadt is either average or peak load
for day t , T b

t is a dummy for daily average temperature falling
within a given temperature bin b, Tt1[Tt > 21] is daily average
temperature when greater than 21 ◦C, Pt is total daily precipita-
tion, f (t) is a sixth-order Chebychev polynomial in day of sample,
and φdow and ψmon are dummies for day of week and month of
year. The coefficients of interest are β and γ, representing the
impact of temperature below and above 21 ◦C, respectively.

For the β coefficients, we use 3 ◦C temperature bins to cap-
ture nonlinearities in the response function, omitting the 15 ◦C
to 18 ◦C bin, which tends to be the minimum load in our data.
This semiparametric function is commonly used in the literature
to capture nonlinearities in the response (8, 28, 29). However, we
depart from the literature by imposing a linear response above
21 ◦C. That is, the bins are used for temperatures below 21 ◦C,
and a linear response is used thereafter. We impose this restric-
tion to project responses for temperature predictions that lie
above the historical support of our data. Otherwise, we would
be unable to simulate electricity demand for temperatures not
observed historically in our data. As noted above, the correla-
tion between the predicted values for average and peak loads for
all observations with temperature greater than 21 ◦C is above
0.9, supporting the assertion that the linear response function is
appropriate in this setting.

The coefficients are identified under the assumption that
changes in temperature are as good as random after controlling
for seasonal variation and time trends. We include precipitation
as a covariate to isolate the effect of temperature on electricity
demand. In principle, one could also control for humidity. We
assume that the correlation between humidity and temperature
in our sample remains stable for the simulation horizon, implying
that not controlling for humidity will not bias our results. Finally,
the day of week dummy is included to increase precision, because
load varies predictably by day of week. Standard errors are esti-
mated using Newey–West standard errors that account for up to
15 days of serial correlation.
Climate simulation. We predict end-of-century climate by tak-
ing the monthly average difference between model projections
in 2000–2020 and 2086–2099 and adding that difference to a his-
torical baseline of weather variation (25). This method gives us
a simulated time series of data for each load zone, adjusted for
changes in the mean of the temperature distribution but retain-
ing representative daily variance in temperatures. We then apply
the coefficients from our estimated model to predict future aver-
age and peak electricity demand under different climate change
scenarios. To estimate percentage changes, we compare esti-
mates of average and peak loads under a given climate change
scenario and under a baseline scenario in which no warming
occurs.
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